6 Ecuaciones de 1.er y 2.º grado

INTRODUCCIÓN

La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la exposición de los conceptos asociados al de ecuación: miembros, términos, grado, coeficientes, solución..., que son fundamentales para comprender el resto de la unidad.

Para resolver ecuaciones de primer grado, los alumnos aprenderán a transponer términos. Es importante que comprendan que las reglas de la suma y el producto son transformaciones que permiten pasar de una ecuación inicial, compleja en su expresión, a otra más sencilla pero con la misma solución, es decir, equivalente a ella. A continuación se trabajará con ecuaciones en las que hay paréntesis y denominadores.

Aunque no es el objetivo de este curso, los alumnos deben aprender a identificar una ecuación de segundo grado. Por ello conviene mostrar la utilidad de la fórmula general para hallar las soluciones de cualquier ecuación de segundo grado, utilizando solo sus coeficientes.

RESUMEN DE LA UNIDAD

- Una *ecuación* es una igualdad algebraica que solo es cierta para algunos valores.
- La incógnita de una ecuación es la letra de valor desconocido.
- El *grado de una ecuación* es el mayor exponente de la incógnita.
- La solución o soluciones de una ecuación son los valores de la incógnita que hacen cierta la igualdad.
- Para *resolver ecuaciones* se aplican las reglas de la suma y el producto.
- Regla de la suma: si sumamos o restamos a los dos miembros de una ecuación un mismo número o expresión algebraica, se obtiene una ecuación equivalente.
- Regla del producto: si multiplicamos o dividimos los dos miembros de una ecuación por un número distinto de cero, se obtiene una ecuación equivalente.
- Ecuación de primer grado: ax = b.
- Ecuación de segundo grado: $ax^2 + bx + c = 0$, siendo a, b y c números reales y $a \ne 0$.

OBJETIVOS	CONTENIDOS	PROCEDIMIENTOS
Distinguir e identificar ecuaciones e identidades.	Elementos de una ecuación. Solución.Ecuaciones equivalentes.	 Comprobación de si un valor es solución o no de una ecuación. Identificación y obtención de ecuaciones equivalentes.
2. Resolver ecuaciones de primer grado.	 Ecuaciones con denominadores. Método general de resolución de ecuaciones. 	Utilización de técnicas para resolver ecuaciones con denominadores.
3. Resolver ecuaciones de segundo grado.	 Ecuaciones de segundo grado completas. Ecuaciones de segundo grado incompletas. 	 Aplicación de la fórmula general para resolver ecuaciones completas de segundo grado. Resolución de ecuaciones incompletas de segundo grado.
Resolver problemas mediante ecuaciones.	 Traducción al lenguaje algebraico del enunciado de un problema. Comprobación de la solución de un problema. 	Seguimiento de los pasos necesarios para resolver problemas mediante ecuaciones de primer o segundo grado.

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES

IDENTIDADES Y ECUACIONES

- Una **igualdad algebraica** está formada por dos expresiones algebraicas separadas por el signo igual (=).
- Una identidad es una igualdad algebraica que se verifica para cualquier valor de las letras.
- Una **ecuación** es una igualdad algebraica que no se cumple para todos los valores de las letras. Resolver una ecuación es encontrar el valor o los valores de las letras para que se cumpla la igualdad.

EJEMPLO

x + x = 2x es una identidad.

Se cumple la igualdad para cualquier valor numérico que tome x:

Para
$$x = 1 \to 1 + 1 = 2 \cdot 1 \to 2 = 2$$

Para
$$x = -2 \rightarrow (-2) + (-2) = 2(-2) \rightarrow -4 = -4$$

x + 4 = 10 es una ecuación. Solo se cumple cuando $x = 6 \rightarrow 6 + 4 = 10$.

1 Indica si las igualdades son identidades o ecuaciones.

a)
$$x + 8 = 2x - 15$$

d)
$$x^2 \cdot x^3 = x^5$$

b)
$$2(x + 2y) = 2x + 4y$$

e)
$$2x + 1 = 11$$

c)
$$x + x + x = 3x$$

f)
$$\frac{x}{2} = 12$$

2 Indica el valor de x para que se cumpla la igualdad.

ECUACIÓN	PREGUNTA	VALOR DE x
15 - x = 12	¿Qué número restado a 15 da 12?	X =
10 + x = 14		
11 - x = 10		
2 + x = 9		
16 - x = 4		

3 Calcula mentalmente el valor de x para que se cumpla la igualdad.

a)
$$x - 1 = 2$$

d)
$$-x + 10 = 5$$

b)
$$x + 7 = 15$$

e)
$$x + 4 = 12$$

c)
$$x - 3 = 6$$

f)
$$-x - 6 = -10$$

ECUACIONES EQUIVALENTES

Dos o más ecuaciones son equivalentes cuando tienen las mismas soluciones.

x + 4 = 10 y 2x = 12 son ecuaciones equivalentes, ya que ambas tienen como solución x = 6.

$$6 + 4 = 10$$

$$2 \cdot 6 = 12$$

4 Para cada una de estas ecuaciones, escribe una ecuación equivalente y halla su solución.

ECUACIÓN	ECUACIÓN EQUIVALENTE	SOLUCIÓN
7 + x = 13		
x + 2 = 9		
2x = 14		
x - 4 = 4		
11 = 9 + x		

5 La ecuación 3x + 4 = 10 tiene como solución x = 2. Averigua cuáles de las ecuaciones son equivalentes a la ecuación 3x + 4 = 10.

a)
$$3x + 10 = 20$$

e)
$$\frac{2}{7}x + 2x - 5 = 6x$$

b)
$$\frac{3}{2}x - 8 = -5$$

f)
$$2x + 8 - \frac{1}{2}x = x + 9$$

c)
$$4x + 12 - x = 21$$

g)
$$12x - 3x + 10 = 5x + 18$$

d)
$$\frac{4}{9}x + 12x - 8 = 18$$

h)
$$\frac{1}{2}x + 3x = \frac{3}{2}x + 4$$

6 Tantea y halla la solución de las siguientes ecuaciones.

a)
$$x - 2 = 2$$

e)
$$x - 4 = 1$$

i)
$$2x - 1 = 3$$

b)
$$4 + x = -2$$

f)
$$-1 + x = -3$$

j)
$$3x = -15$$

c)
$$x - 1 = -5$$

g)
$$-2 - x = -4$$

k)
$$-2x - 4 = 10$$

d)
$$\frac{x}{2} = 4$$

h)
$$\frac{x}{18} = -6$$

1)
$$\frac{2x}{5} = 2$$

RESOLVER ECUACIONES DE PRIMER GRADO

NOMBRE: ______ FECHA: _____

TRANSPOSICIÓN DE TÉRMINOS

- Si a los dos miembros de una ecuación se les **suma o resta un mismo número** o expresión algebraica, se obtiene otra ecuación equivalente a la dada.
- Si a los dos miembros de una ecuación se les **multiplica o divide por un mismo número distinto de cero**, se obtiene otra ecuación equivalente a la dada.

EJEMPLO

Resuelve la ecuación x - 4 = 10.

Sumamos 4 en ambos miembros $\longrightarrow x - 4 + 4 = 10 + 4$

$$x = 14$$

Resuelve la ecuación x + 2x = 4 + 2x + 5.

Restamos 2x en ambos miembros $\longrightarrow x + 2x - 2x = 4 + 2x - 2x + 5$

$$x = 4 + 5$$

$$x = 9$$

Resuelve la ecuación 3x = 12.

Dividimos ambos miembros entre 3 $\longrightarrow \frac{3x}{3} = \frac{12}{3} \rightarrow x = 4$

Resuelve la ecuación $\frac{5x}{4} = 10$.

Multiplicamos por 4 ambos miembros $\longrightarrow \frac{5x}{4} \cdot 4 = 10 \cdot 4 \rightarrow 5x = 40$

Dividimos ambos miembros entre 5 $\longrightarrow \frac{5x}{5} = \frac{40}{5} \rightarrow x = 8$

1 Resuelve las siguientes ecuaciones, aplicando la transposición de términos.

a)
$$3x = 15$$

d)
$$2x + 6 = 20 + 6 + x$$

b)
$$x + 6 = 14$$

e)
$$2x + 4 = 16$$

c)
$$-10 = -x + 3$$

f)
$$-4x - 4 = -20 - x$$

2 Resuelve las siguientes ecuaciones.

a)
$$2x - 5 = 3$$

d)
$$-x - 4 = 10$$

b)
$$x = -15 - 4x$$

e)
$$2x + 7 = x + 14$$

c)
$$x - 10 = 2x - 4$$

f)
$$3x + 8 = 12 - x$$

MÉTODO GENERAL DE RESOLUCIÓN DE ECUACIONES

Resuelve la ecuación 2(x-4) - (6+x) = 3x - 4.

Para resolver una ecuación es conveniente seguir estos pasos.

$$2x - 8 - 6 - x = 3x - 4$$

$$x - 14 = 3x - 4$$

$$x - x - 14 = 3x - x - 4$$

$$-14 = 2x - 4$$

$$-14 + 4 = 2x - 4 + 4$$

$$-10 = 2x$$

4.º Despejar la incógnita.

Dividimos ambos miembros entre 2.

$$\frac{-10}{2} = \frac{2x}{2} \rightarrow -5 = x$$

3 Resuelve estas ecuaciones.

a)
$$4 - x = 2x + 3x - 5x$$

d)
$$3x + 8 - 5(x + 1) = 2(x + 6) - 7x$$

b)
$$-10 - x + 3x = 2x + 4x + 2$$

e)
$$5(x-1) - 6x = 3x - 9$$

c)
$$2x - 9 = 3x - 17$$

f)
$$3(3x+1) - (x-1) = 6(x+10)$$

6

4 Resuelve las siguientes ecuaciones.

a)
$$2(x-5) = 3(x+1) - 3$$

d)
$$3(x+2) + 4(2x+1) = 11x - 2(x+6)$$

b)
$$4(x-2) + 1 = 5(x+1) - 3x$$

e)
$$5(x-4) + 30 = 4(x+6)$$

c)
$$3(x-3) = 5(x-1) - 6x$$

f)
$$5(2-x) + 3(x+6) = 10 - 4(6+2x)$$

RESOLUCIÓN DE ECUACIONES CON DENOMINADORES

Resuelve la ecuación
$$\frac{2x-1}{3} = \frac{x-3}{2} + \frac{3x-7}{4}$$
.

Para resolver una ecuación con denominadores es conveniente seguir estos pasos.

m.c.m.
$$(3, 2, 4) = 3 \cdot 2^2 = 12$$

 $12 \cdot \frac{2x - 1}{3} = 12 \cdot \frac{x - 3}{2} + 12 \cdot \frac{3x - 7}{4}$

$$4(2x-1) = 6(x-3) + 3(3x-7)$$

$$8x - 4 = 6x - 18 + 9x - 21$$

$$8x - 4 = 15x - 39$$

$$8x - 4 - 8x = 15x - 39 - 8x$$
$$-4 = 7x - 39$$

Sumamos 39 en ambos miembros.

$$-4 + 39 = 7x - 39 + 39$$

$$\frac{35}{7} = \frac{7x}{7} \rightarrow x = 5$$

5 Halla la solución de estas ecuaciones.

a)
$$\frac{x-1}{4} - \frac{12-2x}{5} = \frac{x-2}{5}$$

f)
$$\frac{x-2}{2} + \frac{x-3}{3} + \frac{x-4}{4} = 10$$

b)
$$\frac{3x-7}{12} - \frac{2x-3}{6} = \frac{x-1}{8}$$

g)
$$\frac{x-4}{5} + \frac{x+3}{6} - \frac{x-6}{3} = 1 + \frac{x-7}{2}$$

c)
$$\frac{x+4}{3} - \frac{x-4}{5} = 2 + \frac{3x-1}{15}$$

h)
$$2\left(\frac{x}{3} + 5\right) = \frac{2x}{4} + 4$$

d)
$$5 - \frac{x-2}{4} = 4 + \frac{x-3}{2}$$

i)
$$\frac{x-3}{6} = 2 - \frac{5(x+3)}{12}$$

e)
$$\frac{x}{2} + \frac{x}{3} + \frac{x}{4} + \frac{x}{6} = 30$$

j)
$$\frac{3(x+5)}{4} + \frac{-7(x+3)}{10} = 4$$

RESOLVER ECUACIONES DE SEGUNDO GRADO

NOMBRE: _____ FECHA: _____

ECUACIÓN DE SEGUNDO GRADO

Una **ecuación de segundo grado** es una igualdad algebraica del tipo $ax^2 + bx + c = 0$, donde:

- a, b y c son los **coeficientes** de la ecuación, siendo $a \neq 0$.
- $ax^2 \rightarrow$ término cuadrático $bx \rightarrow$ término lineal $c \rightarrow$ término independiente
- x es la incógnita.
- Escribe la expresión general de estas ecuaciones de segundo grado.

a)
$$(x-1)(x+4) = 1 \rightarrow x^2 + 4x - x - 4 = 1 \rightarrow x^2 + 3x - 4 - 1 = 0 \rightarrow x^2 + 3x - 5 = 0$$

b)
$$2x(3x + 5) = -1 + 4x$$

c)
$$x - 5x^2 + 8 = -3x^2 - x - 3$$

2 Identifica los coeficientes de las ecuaciones de segundo grado del ejercicio anterior.

a)
$$x^2 + 3x - 5 = 0 \rightarrow a = 1$$
, $b = 3$, $c = -5$

d)

FÓRMULA GENERAL PARA LA RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO

Una ecuación de segundo grado puede tener dos, una o ninguna solución.

Para obtener las soluciones de una ecuación de segundo grado se aplica la siguiente fórmula.

$$ax^{2} + bx + c = 0 \rightarrow \mathbf{x} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^{2} - 4ac}}{2a}$$

$$x_{1} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

$$x_{2} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$

EJEMPLO

Resuelve la ecuación de segundo grado $x^2 + 5x + 6 = 0$.

$$x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot 6}}{2 \cdot 1} = \frac{-5 \pm \sqrt{25 - 24}}{2} = \frac{-5 \pm \sqrt{1}}{2}$$

$$x_1 = \frac{-5 + 1}{2} = \frac{-4}{2} = -2$$

$$x_2 = \frac{-5 - 1}{2} = \frac{-6}{2} = -3$$

Sustituyendo los valores -2 y -3 en la ecuación $x^2 + 5x + 6 = 0$, se comprueba que la cumplen:

$$(-2)^2 + 5 \cdot (-2) + 6 = 0 \rightarrow 4 - 10 + 6 = 0 \rightarrow 10 - 10 = 0 \rightarrow 0 = 0$$

$$(-3)^2 + 5 \cdot (-3) + 6 = 0 \rightarrow 9 - 15 + 6 = 0 \rightarrow 15 - 15 = 0 \rightarrow 0 = 0$$

3 Resuelve estas ecuaciones de segundo grado.

a)
$$x^2 + 4x + 3 = 0$$

d)
$$7x^2 + 21x = 28$$

b)
$$x^2 - 6x + 8 = 0$$

e)
$$3x^2 + 6 = -9x$$

c)
$$2x^2 - 5x - 7 = 0$$

f)
$$(2x-4)(x-1)=2$$

4 Resuelve las ecuaciones y comprueba que las soluciones verifican la ecuación.

a)
$$x^2 + 2x - 8 = 0$$

b)
$$3x^2 - 6x - 9 = 0$$

c)
$$2x^2 - 7x + 3 = 0$$

6

ECUACIONES DEL TIPO $ax^2 + c = 0$

Las ecuaciones de la forma $ax^2 + c = 0$ se consideran ecuaciones de segundo grado. Son ecuaciones del tipo $ax^2 + bx + c = 0$, donde b = 0.

Para resolverlas se sigue este proceso.

$$ax^2 + c = 0 \rightarrow ax^2 = -c \rightarrow x^2 = \frac{-c}{a} \rightarrow x = \pm \sqrt{\frac{-c}{a}}$$

- Si el **radicando** es **positivo**, hay dos soluciones opuestas: $x_1 = +\sqrt{\frac{-c}{a}}$ y $x_2 = -\sqrt{\frac{-c}{a}}$.
- Si el radicando es negativo, no hay solución.

EJEMPLO

$$2x^2 - 32 = 0 \rightarrow 2x^2 = 32 \rightarrow x^2 = \frac{32}{2} \rightarrow x^2 = 16 \rightarrow x = \pm \sqrt{16} \rightarrow \begin{cases} x_1 = 4 \\ x_2 = -4 \end{cases}$$

$$3x^2 + 75 = 0 \rightarrow 3x^2 = -75 \rightarrow x^2 = \frac{-75}{3} \rightarrow x^2 = -25 \rightarrow x = \pm \sqrt{-25} \rightarrow \text{No tiene solución}$$

5 Resuelve las siguientes ecuaciones.

a)
$$7x^2 - 28 = 0$$

c)
$$5x^2 = 45$$

b)
$$5x^2 - 180 = 0$$

d)
$$18x^2 - 72 = 0$$

6 Indica por qué no tienen solución estas ecuaciones.

a)
$$x^2 + 4 = 0$$

d)
$$3(x^2 + x) = 3x - 12$$

b)
$$2x^2 = -18$$

e)
$$\frac{1}{2}x^2 + \frac{3}{4} = 0$$

c)
$$9x^2 - 5x + 18 = -18 - 5x$$

f)
$$\frac{x^2 + 7}{3} = 2$$

ECUACIONES DEL TIPO $ax^2 + bx = 0$

Las ecuaciones de la forma $ax^2 + bx = 0$ se consideran ecuaciones de segundo grado. Son ecuaciones del tipo $ax^2 + bx + c = 0$, donde c = 0.

Para resolverlas se sigue este proceso.

$$ax^{2} + bx = 0 \xrightarrow{\text{Factor común } x} x(ax + b) = 0 \rightarrow \begin{cases} x_{1} = 0 \\ ax + b = 0 \rightarrow x_{2} = \frac{-b}{a} \end{cases}$$

Estas ecuaciones tienen siempre dos soluciones, siendo cero una de ellas.

EJEMPLO

$$x^2 - 12x = 0 \rightarrow x(x - 12) = 0 \rightarrow \begin{cases} x_1 = 0 \\ x - 12 = 0 \rightarrow x_2 = 12 \end{cases}$$

$$2x^{2} + 5x = 0 \rightarrow x(2x + 5) = 0 \rightarrow \begin{cases} x_{1} = 0 \\ 2x + 5 = 0 \rightarrow 2x = -5 \rightarrow x_{2} = \frac{-5}{2} \end{cases}$$

7 Resuelve las siguientes ecuaciones.

a)
$$5x^2 + 5x = 0$$

c)
$$6x^2 = 30x$$

b)
$$2x^2 - 8x = 0$$

d)
$$-5x^2 + 20x = 0$$

8 Halla la solución de estas ecuaciones.

a)
$$25x^2 - 100x = 0$$

d)
$$-4x^2 + 16x = 0$$

b)
$$5x - 4x^2 = 0$$

e)
$$x(x-3) + 8 = 4(x+2)$$

c)
$$x - x^2 = 0$$

f)
$$\frac{x(x-1)}{2} = \frac{2x^2+3}{3}$$

RESOLVER PROBLEMAS MEDIANTE ECUACIONES

LOMBBE	CLIDCO	
MANDOL.	CHBCA.	FF(,HV
NOMBRE:	CURSU:	FFUDA:

RESOLUCIÓN DE PROBLEMAS

Para resolver un problema utilizando ecuaciones es conveniente seguir estos pasos.

- 1.º Lectura y comprensión del enunciado. Es necesario distinguir los datos conocidos y el dato desconocido, es decir, la incógnita.
- 2.º Planteamiento de la ecuación. Hay que expresar las condiciones del enunciado en forma de ecuación: la correspondencia entre los datos y la incógnita.
- 3.º Resolución de la ecuación. Se obtiene el valor de la incógnita resolviendo la ecuación.
- **4.º Comprobación e interpretación del resultado.** Se debe comprobar si el resultado verifica el enunciado e interpretar la solución en el contexto del problema.

EJEMPLO

Ana tiene 2 € más que Berta, Berta tiene 2 € más que Eva y Eva tiene 2 € más que Luisa. Entre las cuatro amigas tienen 48 €. Calcula la cantidad de dinero que tiene cada una.

1.º Lectura y comprensión del enunciado.

Tomamos como dato desconocido el dinero que tiene Luisa.

2.º Planteamiento de la ecuación.

Dinero de Luisa $\rightarrow x$

Las restantes cantidades de dinero las escribimos en función de x:

Dinero de Eva \longrightarrow 2 \in más que Luisa \rightarrow x + 2

Dinero de Berta \rightarrow 2 € más que Eva \longrightarrow (x + 2) + 2 = x + 4

Dinero de Ana $\longrightarrow 2 \in$ más que Berta $\rightarrow (x + 4) + 2 = x + 6$

Escribimos la condición de que la suma de las cantidades es 48 €.

$$x + (x + 2) + (x + 4) + (x + 6) = 48$$

3.º Resolución de la ecuación.

$$x + (x + 2) + (x + 4) + (x + 6) = 48 \rightarrow 4x + 12 = 48 \rightarrow 4x = 48 - 12 \rightarrow 4x = 36 \rightarrow x = \frac{36}{4} = 9 \rightarrow \text{Luisa tiene } 9 \in \mathbb{R}$$

Eva tiene: $9 + 2 = 11 \in$. Berta tiene: $9 + 4 = 13 \in$. Ana tiene: $9 + 6 = 15 \in$.

4.º Comprobación e interpretación del resultado.

Las cantidades que tienen las amigas: 9, 11, 13 y 15 € cumplen las condiciones del enunciado.

$$9 + 11 + 13 + 15 = 48$$

- 1 La suma de tres números consecutivos es 30. Hállalos.
- 2 La suma de un número, su doble y su triple es 66. ¿Cuál es el número?